

Sustainable Energy Systems, LLC

March 28, 2021

4509 Metropolitan Court Frederick, MD 21704 Attn: Mr. Rollie Belles III

Re: 1678 32nd Street NW – Washington, DC 20007 Structural Certification.

Mr. Belles:

In accordance with your request I, Juan Utrera P.E. acting as an independent structural engineer for the project, located on 1678 32^{nd} Street NW – Washington, DC 20007, have reviewed the information provided by Sustainable Energy Systems, LLC for the installation of solar panels on the existing roof system.

The proposed solar panels will add an additional 3 PSF of dead load to the roof framing system; the solar panels are to be supported using the Everest Cross Rail System and the L-Mount fastened to the existing roof framing at 72" O.C. maximum.

Conclusions & Recommendations:

Roof 1:

The existing roof rafters spaced @ 16" O.C. are structurally sound to support the additional 3 PSF imposed by the solar panels. <u>Please 5.5 SF per mount location the rafters can support the 165 pounds of snow load imposed by the design ground snow load of 30 PSF. The installation of the panels has also been designed for 115 MPH wind speed required by code in the area.</u>

Roof 2:

The existing roof trusses spaced @ 16" O.C. are structurally sound to support the additional 3 PSF imposed by the solar panels. <u>Please 5.3 SF per mount location the rafters can support the 161 pounds of snow load imposed by the design ground snow load of 30 PSF. The installation of the panels has also been designed for 115 MPH wind speed required by code in the area.</u>

Roof 3:

The existing roof rafters spaced @ 16" O.C. are structurally sound to support the additional 3 PSF imposed by the solar panels. <u>Please 6.5 SF per mount location the rafters can support the 195 pounds of snow load imposed by the design ground snow load of 30 PSF. The installation of the panels has also been designed for 115 MPH wind speed required by code in the area.</u>

The proposed solar panel collectors and the Everest Cross Rail System to support the collectors comply with the 2015 International Building Code (IBC) and the Uniform Solar Energy Code. The mounting hardware will work well with the existing roof framing.

Should you have any questions regarding the information submitted, or if I can be of further assistance please call me at (301) 748-2769.

Sincerely,

Juan M. Utrera, P.E. Structural Engineering Unlimited, LLC

1678 32nd St NW, Washington, DC 20007

<u>SOLAR PV PROJECT,</u> KAPAN, TUMER 6.24 KW

301-788-4003

32nd St.

Roof 1 Specs: Modules : 5 Pitch: 28° Azimuth: 84° Rafter Spacing: 16" O.C.	Roof 2 Specs: Modules : 4 Pitch: 28° Azimuth: 264° Rafter Spacing: 16" O.C.	Roof 3 Specs: Modules : 8 Pitch: 2° Azimuth: 264° Rafter Spacing: 16" O.C.			4	<u>ARRAY L</u>	<u>AYOUT</u>
1. MOUNTS ARE APPROX 2. MOUNTS SHOULD BE S 3. DO NOT SPLICE RAILS 4. ON TRUSS ROOF SYST	STRUCTURA IMATE LOCATION BUT AC STAGGERED WHEN POSS IN MIDDLE 50% OF SPAN TEMS, KEEP ATTACHMEN PV MODU REC 370 v Module We Module Le Module Le Module Wi Frame: 1.2 SolarEdge SE odules	LI NOTES: CCURATELY SPACED SIBLE TO EVENLY DISTRIBUTE BETWEEN TWO MOUNTS TS 6" MIN. FROM NAIL PLATES LE SPECS: REC 36 watt Module eight: 43 lbs 41.7 lbs module 66.3" Module 66.3" Module 1000 1100 1000	60 watt Weight: Length: Width: 39.3" 1.5" (38 mm)	ROO	PE 1:	Height off roof: 4" REC 360'S FRONT RO	x5 ON OF
Racking: E Optimizer:	verest / Cherr SolarEdge P3	nlink 370 (1 per modul	e)	ROO	P <u>F 2:</u>		<u>ROOF 3:</u>
<pre></pre>	ount: 19+14+23 of Rails: 12 of Mid Clips: 17 of End Clips: 38 of Splices: 0 of Grounding Lu Box: 1	³⁼⁵⁶ Ø String 3 ugs: 11	Homerun	C			
Tumer Kapa 1678 32nd S Washington, (202)674-06 tumerkapan	n 6.24 St NW DC 20007 S26 @gmail.com						
SUSTAINABLE	E ENERGY SYST	EMS, LLC		301-788-4003	4509 MET	ROPOLITAN CT, FREDER	ICK, MD, 21704

Tumer Kapan 6.24 1678 32nd St NW Washington, DC 20 (202)674-0626 tumerkapan@gmai	0007 I.com	CHEMLINK DETAIL Solar Module Unirac Mount Unirac Mount 'NOT DRAWN TO SCALE Unirac Mount 'NOT DRAWN TO SCALE Endet Bood Decking 518* 516* Lag minimum embedment depth 2.58*	End damp Ral
REC 370 v Module We Module Ler Module Wid Frame: 1.2'	PV MODULE watt ight: 43 lbs ngth: 67.8" dth: 40" ' (30mm)	SPECS: REC 360 watt Module Weight: 41.7 lbs Module Length: 66.3" Module Width: 39.3" Frame: 1.5" (38mm)	4"A
ROOF 1 SPECS : 2 x 8 Top Chord Rafter Spacing: 16" Roof Material: Metal	ROOF 2 SPECS : 2 x 8 Top Chord Rafter Spacing: 16" Roof Material: Metal	ROOF 3 SPECS : 2 x 8 Top Chord Rafter Spacing: 16" Roof Material: TPO	<u>ROOF 1 :</u> 169"
ARRAY 1 SPECS : Pitch: 28° Azimuth: 84° # Of Modules: 5 Total Module Weight: 215 lbs Racking Weight: 28.5 lbs Array Weight: 243.5 lbs Array Area: 94 sq.ft. Array Dead Load: 2.6 lbs/sq.ft. Number of Mounts: 17 Load Per Mount: 14.3 lbs	ARRAY 2 SPECS : Pitch: 28° Azimuth: 264° # Of Modules: 4 Total Module Weight: Racking Weight: 22.8 Array Weight: 194.8 II Array Area: 75.2 sq.f Array Dead Load: 2.6 Number of Mounts: 14 Load Per Mount: 13.9	ARRAY 3 SPECS : Pitch: 2° Azimuth: 264° # Of Modules: 8 172 lbs lbs bs Array Weight: 45.6 lbs Array Weight: 389.6 lbs t. Array Area: 150.4 sq.ft. Array Dead Load: 2.6 lbs/sq Number of Mounts: 23 Load Per Mount: 16.9 lbs	s .ft. <u>ROOF 3 :</u>

A100 SIDE ELEVATION

PV MODULE SPECS	PV MODULE SPECS	INVERTER 1 SPECS	<u>AC OUTPUT</u>
REC 360 watt Module Weight: 41.7 lbs Module Length: 66.3" Module Width: 39.3" Frame: 1.5" (38mm)	REC 370 watt Module Weight: 43 lbs Module Length: 67.8" Module Width: 40" Frame: 1.2" (30mm)	SOLAREDGE SE5000H-US OPERATING CURRENT (IMP): 13.5A OPERATINGVOLTAGE (VMP): 380VDC MAX SHORT CIRCUIT CURRENT (ISC): 30A MAX SYSTEM VOLTAGE (VOC): 480VDC STRINGS: 1&2 OCPD 30A	SYSTEM VOLTAGE: 240 VAC

DC SOURCE CONDUCTORS - all conductors are Cu			AC SOURCE CONDUCTORS - all conductors are THHN/Cu *unless noted							
#	CONDUIT	CONDUCTOR	GR	OUND	#	CONDUIT	CONDUCTOR	NEUTRAL	GROUND	CT WIRE
1	NONE	(2) 10 AWG PV WIRE	(1) 6 A	AWG BARE	3	3/4" EMT	(2) 10 AWG (R,B)	(1) 10 AWG	(1) 8 AWG (G)	(4) 18 AWG (TP,BW)
2	3/4"	(4) 10 AWG THHN (2B,2R)	, (1) 6 A	AWG THHN						
					4	(E) SEC	(2) 4/0 (R,B) Al	(1) 4/0 AWG Bare Al	NONE	NONE
SUSTAINABLE ENERGY SYSTEMS, LLC					301-788-4	4003	4509 N	METROPOLITAN	CT FREDERICK, MD	

MODULE TO OPTIMIZER (FREE AIR)	PV HOME RUNS (FREE	NR)	INVERTER TO POINT OF CONNE	ECTION (POC)												
#12 AWG PV WIRE PROVIDED BY MODULE MC4 CONNECTION - 90°C max 30A WIRE MANUFACTURER - RATED 90° C CAPACITY OF WIRE DERATE USING 90° C = 30 AMPS ROOF TOP TEMPERATURE CORRECTION =0° - Wires under array AMBIENT TEMP 36° C + 0° = .91 Correction Factor (CF) CONDUCTOR IN RACEWAY - FREE AIR = 1 Correction Factor	#10 AWG PV WIRE Field Installed MC4 CONNECTION - 90°C max 30A TERMINALS MAINTAIN 75° C RATING - 35 A CAPACITY OF WIRE DERATE USING 90° C = 40 AMPS ROOF TOP TEMPERATURE CORRECTION = 0 - Wires Under Array AMBIENT TEMP 36° C+0° = .91 Correction Factor (CF) CONDUCTOR IN RACEWAY - FREE AIR = 1 Correction Factor		#10 AWG THHN Field Installed TERMINALS MAINTAIN 75° C RATING - 35 A CAPACITY OF WIRE DERATE USING 90° C = 40 AMPS ROOF TOP TEMPERATURE CORRECTION = 0 AMBIENT TEMP 36 - 40° C+0° = .91 Correction Factor (CF) CONDUCTOR IN RACEWAY - 3 = 1 Correction Factor			Table 250.122 Minimum Size Equipment Grounding Conductors for Grounding Raceway and Equipment Rating or Setting of Automatic Overcurrent of Equipment, Conduit, etc., Not Exceeding (Amperes) Size (AWG or kcmil) Device in Circuit Ahead of Equipment, Conduit, etc., Not Exceeding (Amperes) Copper Aluminum or Copper-Clad Aluminum* 15 14 12 20 12 10 30 10 8 40 10 8										
<u>CAPACITY OF WIRE = 30 * 0.91 * 1= 27.3 A</u> # OF MODULES IN PARALLEL PER CIRCUIT = 1 ISC OF REC 370 = 10.3A CONTINUOUS LOAD = 1.25 <u>MAX ISC = 1 * 10.3 * 1.25 = 12.9A</u>	CAPACITY OF WIRE = 40 # OF MODULES IN PARA ISC OF OPTIMIZER = 15 CONTINUOUS LOAD = 1 MAX ISC = 1 * 15 *1.25 =	1 * 0.91 * 1= 36.4 A > 35A LLEL PER CIRCUIT = 1 A 25 18.75A	<u>CAPACITY OF WIRE = 40 * .91 * 7</u> INVERTER SE5000 OUTPUT = 21A CONTINUOUS LOAD = 1.25 <u>MAX ISC = 21 * 1.25 = 26.25A</u> <u>NEXT AVAILABLE OCPD = 30A</u>	I <u>= 36.4 A > 35A</u>		60 100 200 300 500 600 800 1000 1200 1200 2000 2500 3000 4000 2000	10 8 6 4 3 1 1/0 2/0 3/0 4/0 250 3/0 4/0 250 3/0 4/00 5/00	8 6 4 2 1 10 200 300 4/0 250 350 4/0 600 600 600 800 800		Table 318 ASR/2008 Volte, 49 °C Dorug Earth difecosity file	(Semarip Table) 90°C (148°F Tar of), Band an Au Day C (148°F) 79°C / Tage	8, Joh Allowah ugh 1947 y. N unit Temperatur ensure Rating 1977 1980 C 1979 N 1970 N 1	dr Anspacities tat Mare Than mere of WC CI of Cambridge 1994 (1994) The SA (1994) The	f Isonidad Con Three Carren-C 725 Tane 30: 304 (s) 7() - 20*C (007	netoes Roted Up a preying Combuctor	need floctuating lower to flaceway, Caldo, er
CONCLUSION: #12 is sufficient 27.3A > 12.9A	CONCLUSION: #10 is suf	ficient 35A > 18.75 A	CONCLUSION: #10 is sufficient	35A > 26.25 A	Note: W	6000 bere necessary to	800 comply with 250.	1200 1200 4(A)(5) or (B)(4), 1	the	Sam ANG or basist. Typ	o 10,12 138	THW, USE- KINIW, M ZW KINIP	2 XHUL HHWL Dype 8-2, 236-2 1	TW. THWN, TH TW. THWN, XH UNK UNK OF	A RHW-2, USE-2, AHR, XHHW-2, 200-2 XHHW-2, 200-2 OPPER-CLAD	
OPTIMIZER TO OPTIMIZER (FREE AIR)	PASS THROUGH BOX TO	INVERTER (EMT)/ROOF TOP CONDUIT	BUSS BAR CALCULATION NEC	705.12(B)(2)(3)(b) (NEC 2011 690.8)	equipme table. *See insi	nt grounding conductions	tor shall be sized I in 250.120.	arger than given in t	his			5 2	1.07/8.82	50 50 50 50 50 50 50 50 50 50 50 50 50 5		Aun AWG of Lond
#12 AWG PV WIRE PROVIDED BY MODULE MC4 CONNECTION - 90°C max 30A WIRE MANUFACTURER - RATED 90° C CAPACITY OF WIRE DERATE USING 90° C = 30 AMPS ROOF TOP TEMPERATURE CORRECTION = 0 - Wires under array AMBIENT TEMP 36° C + 0° = .91 Correction Factor (CF) CONDUCTOR IN RACEWAY - FREE AIR = 1 Correction Factor	#10 AWG THHN Field Ins TERMINALS MAINTAIN 7 CAPACITY OF WIRE DEF ROOF TOP TEMPERATU AMBIENT TEMP 36° C + CONDUCTOR IN RACEW	Tailed 5° C RATING - 35A RATE USING 90° C = 40 AMPS RE CORRECTION = 22° 22° = .71 Correction Factor (CF) (AY = 4 = .8 Correction Factor	MAIN SERVICE BUSS RATING = MAIN BREAKER SIZE = 200A 200 * 1.2 = 240 240-200 (MCB) = 40A MAX ALLOWABLE PV BREAKER	200A = 40A	Table 310. Three Cur	15(B)(3)(a) A rrent-Carryin Sumber of onductors ¹	djustment F Ig Conducto T	actors for Mo rs in a Racew Percent of Va able 310.15(B)(Table 310.15(I Adjusted for / Femperature if	ore Than ay or Cable alues in 16) through B)(19) as Ambient Necessary	A + + +	日本 1		1000000000000000000000000000000000000	10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		**************************************
CAPACITY OF WIRE = 30 * 0.91 * 1= 27.3 A # OF MODULES IN PARALLEL PER CIRCUIT = 1 ISC OF OPTIMIZER = 15 A CONTINUOUS LOAD = 1.25	CAPACITY OF WIRE = 40 # OF MODULES IN PARA ISC OF OPTIMIZER = 15, CONTINUOUS LOAD = 1	<u>* 0.71 * .8 = 22.72 A</u> LLEL PER CIRCUIT = 1 A .25			41 "Number of racew	4-6 7-9 10-20 21-30 31-40 and above of conductors ray or cable or 31	is the total nu cable adjust 0.15(B)(5) and	80 70 50 45 40 35 mber of condu ed in accordan d (6).	uctors in the uce with	Tab for I Roo	e 310.15(Raceways ftops	B)(3)(c) or Cab	Ambie les Exp	nt Tempe osed to S	rature Ac	ljustment I or Above
<u>MAX ISC = 1 * 15 *1.25 = 18.75A</u> CONCLUSION: #12 is sufficient 27.3A > 18.75A	MAX ISC = 1 * 15 *1.25 = * CONCLUSION: #10 is suf	1 <u>8.75A</u> "icient 22.72 A > 18.75 A	CONCLUSION: 30A breaker is al	lowed, 40A > 30A.	N An Fac	EC Table	e 310.1 perature C d on 30°C	5(B)(2)(orrection (86°F)	A)	Di Botto On roo (0	stance Alton of Rac f $0 - 13$ f $\frac{1}{\sqrt{2}}$ in.)	ove Ro eway or nm	of to r Cable		°C 33	e adder °F 60
INVERTER (1) TO AC COMBINER					For ambien allowable al	t temperature ampacities sp ppropriate cor	s other than ecified in the rection facto	30°C (86°F), r ampacity tab r shown belov	nultiply the les by the v.	Above	roof 13 n 90 mm -	nm (½ 300 m	in.) m (3½		22 17	40 30
N/A					Ambient Temperature (°C) 10 or less	Temperatu 60°C 1.29	re Rating of 75°C 1.20	Conductor 90°C 1.15	Ambient Temperature (°F) 50 or less	Above (12 in	12 in.) 300 mm 1. – 36 in	- 900 n .)	nm		14	25
					11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 61-65	1.22 1.15 1.08 1.00 0.91 0.82 0.71 0.58 0.41 	1.15 1.11 1.05 1.00 0.94 0.88 0.82 0.75 0.67 0.58 0.47	1.12 1.08 1.04 1.00 0.96 0.91 0.87 0.82 0.76 0.71 0.65	51-59 60-68 69-77 78-86 87-95 96-104 105-113 114-122 123-131 132-140 141-149		Tun 167 Was (202 tum	ner 8 32 shin 2)6 erka	Kap 2nd igto 74-i apa	oan (St N n, D 062(n@g	5.24 NW C 20 S gmai	0007 I.com
SUSTAINABLE ENERGY SYSTEMS, LLC 4509 Metropolitan Ct, Fre			ederick, MD, 21704	301-	788-4003					EL	ECTF		L CA	LCS		

or kcmil)				
Aluminum or Copper-Clad Aluminum*				
12 10 8				
8 8 6				
4 2 1				
1/0 2/0 3/0				
4/0 250 350				
400 600 600				
800 1200 1200				

REC ALPHX SERIES

380 WP POWER
20 YEAR PRODUCT WARRANTY
25 YEAR POWER OUTPUT WARRANTY

REC ALPHOX SERIES

GENERAL DATA

ELECTRICAL DATA @ STC

	120 half-cut cells with REC
Cell type:	heterojunction cell technology
	6 strings of 20 cells in series
Glass:	0.13 in (3.2 mm) solar glass with anti-reflection surface treatment
Packshoot.	Highly resistant
DackSheet:	polymeric construction
Frame:	Anodized aluminum (black)

Junction box:	3-part, 3 bypass diodes, IP67 rated in accordance with IEC 62790	
Cable:	12 AWG (4 mm²) PV wire, 39 + 47 in (1 + 1.2 m) in accordance with EN 50618	
Connectors:	StäubliMC4PV-KBT4/KST4,12AWG(4mm²) in accordance with IEC 62852 IP68 only when connected	
Origin:	Made in Singapore	

Product Code*: RECxxxAA

Panel Efficiency (%)	20.6	20.9	21.2	21.4	21.7
Short Circuit Current - I _{sc} (A)	10.23	10.26	10.30	10.40	10.46
Open Circuit Voltage - V _{oc} (V)	44.1	44.3	44.5	44.6	44.7
Nominal Power Current - I _{MPP} (A)	9.55	9.60	9.66	9.72	9.76
Nominal Power Voltage - V _{MPP} (V)	37.7	38.0	38.3	38.7	39.0
Watt Class Sorting - (W)	-0/+5	-0/+5	-0/+5	-0/+5	-0/+5
Nominal Power - P _{MPP} (Wp)	360	365	370	375	380

Values at standard test conditions (STC: air mass AM 1.5, irradiance 10.75 W/sq ft (1000 W/m²), temperature 77°F (25°C), based on a production spread with a tolerance of $V_{oc} \& I_{sc} \pm 3\%$ within one watt class. * Where xxx indicates the nominal power class (P_{MPP}) at STC above.

Pr	oduct Code	RECxxxAA		
274	278	282	286	290
35.5	35.8	36.1	36.4	36.7
7.71	7.76	7.80	7.85	7.88
41.6	41.7	41.9	42.0	42.1
8.26	8.29	8.32	8.40	8.45
	Pr 274 35.5 7.71 41.6 8.26	Product Code 274 278 35.5 35.8 7.71 7.76 41.6 41.7 8.26 8.29	Product Code": RECxxxAA 274 278 282 35.5 35.8 36.1 7.71 7.76 7.80 41.6 41.7 41.9 8.26 8.29 8.32	Product Code": RECxxxAA 274 278 282 286 35.5 35.8 36.1 36.4 7.71 7.76 7.80 7.85 41.6 41.7 41.9 42.0 8.26 8.29 8.32 8.40

Nominal module operating temperature (NMOT: air mass AM 1.5, irradiance 800 W/m², temperature 68°F (20°C), windspeed 3.3 ft/s (1 m/s).* Where xxx indicates the nominal power class (P_{MPP}) at STC above.

CERTIFICATIONS

IEC 61215:2016, IEC 61730:2016, UL 1703, UL 61730						
IEC 62804	PID					
IEC 61701	Salt Mist					
IEC 62716	Ammonia Resistance					
UL1703	Fire Type Class 2					
IEC 62782	Dynamic Mechanical Load					
IEC 61215-2:2016	Hailstone (35mm)					
AS4040.2 NCC 2016	Cyclic Wind Load					
ISO 14001:2004, ISO 9001:201	5, OHSAS 18001:2007					
<u> </u>						

WARRANTY

20 year product warranty 25 year linear power output warranty Maximum annual power degression of 0.25% p.a. Guarantees 92% of power after 25 years See warranty conditions for further details.

MECHANICAL DATA

Dimensions:	67.8 x 40 x 1.2 in (1721 x 1016 x 30 mm)
Area:	18.8 sq ft (1.75 m²)
Weight:	43 lbs (19.5 kg)

MAXIMUM RATINGS

Operational temperature:	-40+85°C
Maximum system voltage	e: 1000 V
Design load (+): snow Maximum test load (+):	4666 Pa (97.5 lbs/sq ft)⁺ 7000 Pa (146 lbs/sq ft)*
Design load (-): wind Maximum test load (-):	2666 Pa (55.6 lbs/sq ft)⁺ 4000 Pa (83.5 lbs/sq ft)*
Max series fuse rating:	25 A
Max reverse current:	25 A
	* Calculated using a safety factor of 1.

*See installation manual for mounting instructions

TEMPERATURE RATINGS*

Nominal Module Operating Temperature:	44°C (±2°C)
Temperature coefficient of P _{MPP} :	-0.26 %/°C
Temperature coefficient of V_{oc} :	-0.24 %/°C
Temperature coefficient of I _{sc} :	0.04 %/°C
*The research is a second fit of a second second	· · · P · · · · · · I · · ·

The temperature coefficients stated are linear values

LOW LIGHT BEHAVIOUR

Typical low irradiance performance of module at STC:

Founded in Norway in 1996, REC is a leading vertically integrated solar energy company. Through integrated manufacturing from silicon to wafers, cells, high-quality panels and extending to solar solutions, REC provides the world with a reliable source of clean energy. REC's renowned product quality is supported by the lowest warranty claims rate in the industry. REC is a Bluestar Elkem company with headquarters in Norway and operational headquarters in Singapore. REC employs around 2,000 people worldwide, producing 1.5 GW of solar panels annually.

Power Optimizer

For North America

P320 / P340 / P370 / P400 / P405 / P505

PV power optimization at the module-level

- Specifically designed to work with SolarEdge inverters
- / Up to 25% more energy
- Superior efficiency (99.5%)
- Mitigates all types of module mismatch losses, from manufacturing tolerance to partial shading
- Flexible system design for maximum space utilization

- Fast installation with a single bolt
- Next generation maintenance with modulelevel monitoring
- Meets NEC requirements for arc fault protection (AFCI) and Photovoltaic Rapid Shutdown System (PVRSS)
- Module-level voltage shutdown for installer and firefighter safety

/ Power Optimizer For North America P320 / P340 / P370 / P400 / P405 / P505

Optimizer model (typical module compatibility)	P320 (for 60-cell modules)	P340 (for high- power 60-cell modules)	P370 (for higher- power 60 and 72-cell modules)	P400 (for 72 & 96- cell modules)	P405 (for thin film modules)	P505 (for higher current modules)	
INPUT							
Rated Input DC Power ⁽¹⁾	320	340	370	400	405	505	W
Absolute Maximum Input Voltage (Voc at lowest temperature)	4	8	60	80	125(2)	83(2)	Vdc
MPPT Operating Range	8 -	48	8 - 60	8 - 80	12.5 - 105	12.5 - 83	Vdc
Maximum Short Circuit Current (Isc)		11		10).1	14	Adc
Maximum DC Input Current		13.75		12.	.63	17.5	Adc
Maximum Efficiency			99	9.5			%
Weighted Efficiency		98.8 98.6					
Overvoltage Category							
OUTPUT DURING OPER	RATION (POWEI	R OPTIMIZER C	ONNECTED TO	OPERATING SO	LAREDGE INVER	RTER)	
Maximum Output Current			1	5			Adc
Maximum Output Voltage		6	50		8	5	Vdc
OUTPUT DURING STANDBY (POWER OPTIMIZER DISCONNECTED FROM SOLAREDGE INVERTER OR SOLAREDGE INVERTER OFF)							
Safety Output Voltage per Power Optimizer			1 ±	0.1			Vdc
STANDARD COMPLIANCE							
EMC	FCC Part15 Class B, IEC61000-6-2, IEC61000-6-3						
Safety			IEC62109-1 (class	i II safety), UL1741			
RoHS			Ye	es			
INSTALLATION SPECIFI	CATIONS						
Maximum Allowed System Voltage			10	00			Vdc
Compatible inverters		All Sc	olarEdge Single Phase	and Three Phase inve	erters		
Dimensions (W x L x H)	129	x 153 x 27.5 / 5.1 x 6	x 1.1	129 x 153 x 33.5 / 5.1 x 6 x 1.3	129 x 159 x 49.5 / 5.1 x 6.3 x 1.9	129 x 162 x 59 / 5.1 x 6.4 x 2.3	mm / in
Weight (including cables)		630 / 1.4		750 / 1.7	845 / 1.9	1064 / 2.3	gr / lb
Input Connector			MC	4(3)			
Output Wire Type / Connector			Double Insu	ulated; MC4			
Output Wire Length	0.95	/ 3.0		1.2 ,	/ 3.9		m / ft
Input Wire Length			0.16 /	0.52			m / ft
Operating Temperature Range			-40 - +85 /	-40 - +185			°C / °F
Protection Rating			IP68 / N	IEMA6P			
Relative Humidity	0 - 100						

⁽¹⁾ Rated STC power of the module. Module of up to +5% power tolerance allowed
 ⁽²⁾ NEC 2017 requires max input voltage be not more than 80V
 ⁽³⁾ For other connector types please contact SolarEdge

PV System D a SolarEdge	esign Using Inverter ⁽⁴⁾⁽⁵⁾	Single Phase HD-Wave	Single phase	Three Phase 208V	Three Phase 480V	
Minimum String Length	P320, P340, P370, P400	8		10	18	
(Power Optimizers)	P405 / P505	6		8	14	
Maximum String Length (Power Optimizers)		25		25	50(6)	
Maximum Power per String		5700 (6000 with SE7600-US - SE11400- US) 5250		6000(7)	12750(8)	W
Parallel Strings of Differen	t Lengths	Yes				

 ⁽⁶⁾ For detailed string sizing information refer to: http://www.solaredge.com/sites/default/files/string_sizing_na.pdf
 ⁽⁶⁾ It is not allowed to mix P405/P505 with P320/P340/P370/P400 in one string
 ⁽⁶⁾ A string with more than 30 optimizers does not meet NEC rapid shutdown requirements; safety voltage will be above the 30V requirement
 ⁽⁷⁾ For SE14.4KUS/SE43.2KUS: It is allowed to install up to 6,500W per string when 3 strings are connected to the inverter (3 strings per unit for SE43.2KUS) and when the maximum power difference between the strings is up to 1,000W
 ⁽⁸⁾ For SE30KUS/SE33.3KUS/SE66.6KUS/SE100KUS: It is allowed to install up to 15,000W per string when 3 strings are connected to the inverter (3 strings per unit for SE66.6KUS/SE100KUS) and when the maximum power difference between the strings is up to 2,000W and when the maximum power difference between the strings is up to 2,000W

Single Phase Inverter with HD-Wave Technology

for North America

0

SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US / SE7600H-US / SE10000H-US / SE11400H-US

O

Optimized installation with HD-Wave technology

- Specifically designed to work with power optimizers
- Record-breaking efficiency
- Quick and easy inverter commissioning directly from a smartphone using the SolarEdge SetApp
- Fixed voltage inverter for longer strings
- Integrated arc fault protection and rapid shutdown for NEC 2014 and 2017, per article 690.11 and 690.12

- / UL1741 SA certified, for CPUC Rule 21 grid compliance
- Extremely small
- / Built-in module-level monitoring
- Øutdoor and indoor installation
- Optional: Revenue grade data, ANSI C12.20 Class 0.5 (0.5% accuracy)

Single Phase Inverter with HD-Wave Technology for North America

SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US/ SE7600H-US / SE10000H-US / SE11400H-US

	SE3000H-US	SE3800H-US	SE5000H-US	SE6000H-US	SE7600H-US	SE10000H-US	SE11400H-US	
APPLICABLE TO INVERTERS WITH PART NUMBER		SEXXXXH-XXXXBXX4						
OUTPUT								
Rated AC Power Output	3000	3800 @ 240V 3300 @ 208V	5000	6000 @ 240V 5000 @ 208V	7600	10000	11400 @ 240V 10000 @ 208V	VA
Maximum AC Power Output	3000	3800 @ 240V 3300 @ 208V	5000	6000 @ 240V 5000 @ 208V	7600	10000	11400 @ 240V 10000 @ 208V	VA
AC Output Voltage MinNomMax. (211 - 240 - 264)	~	√	~	~	~	~	\checkmark	Vac
AC Output Voltage MinNomMax. (183 - 208 - 229)	-	~	-	~	-	-	\checkmark	Vac
AC Frequency (Nominal)				59.3 - 60 - 60.5 ⁽¹⁾				Hz
Maximum Continuous Output Current @240V	12.5	16	21	25	32	42	47.5	A
Maximum Continuous Output Current @208V	-	16	-	24	-	-	48.5	A
Power Factor		1, adjustable -0.85 to 0.85						
GFDI Threshold				1				A
Utility Monitoring, Islanding Protection, Country Configurable Thresholds				Yes				
INPUT	·							
Maximum DC Power @240V	4650	5900	7750	9300	11800	15500	17650	W
Maximum DC Power @208V	-	5100	-	7750	-	-	15500	W
Transformer-less, Ungrounded				Yes				
Maximum Input Voltage				480				Vdc
Nominal DC Input Voltage		3	80			400		Vdc
Maximum Input Current @240V ⁽²⁾	8.5	10.5	13.5	16.5	20	27	30.5	Adc
Maximum Input Current @208V ⁽²⁾	-	9	-	13.5	-	-	27	Adc
Max. Input Short Circuit Current		·		45	<u>`</u>	·		Adc
Reverse-Polarity Protection				Yes				
Ground-Fault Isolation Detection				600kΩ Sensitivity				
Maximum Inverter Efficiency	99			9	9.2			%
CEC Weighted Efficiency			<u>c</u>	99			99 @ 240V 98.5 @ 208V	%
Nighttime Power Consumption				< 2.5				W

(1) For other regional settings please contact SolarEdge support

(2) A higher current source may be used; the inverter will limit its input current to the values stated

Single Phase Inverter with HD-Wave Technology for North America

SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US/ SE7600H-US / SE10000H-US / SE11400H-US

	SE3000H-US	SE3800H-US	SE5000H-US	SE6000H-US	SE7600H-US	SE10000H-US	SE11400H-US				
ADDITIONAL FEATURES											
Supported Communication Interfaces			RS485, Etherne	t, ZigBee (optional), C	ellular (optional)						
Revenue Grade Data, ANSI C12.20				Optional ⁽³⁾							
Inverter Commissioning		with the	SetApp mobile applie	cation using built-in W	i-Fi station for local c	onnection					
Rapid Shutdown - NEC 2014 and 2017 690.12			Automatic Rapi	d Shutdown upon AC	Grid Disconnect						
STANDARD COMPLIANCE											
Safety		UL1741, UL1741 SA, UL1699B, CSA C22.2, Canadian AFCI according to T.I.L. M-07									
Grid Connection Standards			IEE	E1547, Rule 21, Rule 14	(HI)						
Emissions				FCC Part 15 Class B							
INSTALLATION SPECIFICAT	IONS										
AC Output Conduit Size / AWG Range		3/	'4" minimum / 14-6 A\	WG		3/4" minimur	m /14-4 AWG				
DC Input Conduit Size / # of Strings / AWG Range		3/4″ mir	nimum / 1-2 strings / 1	4-6 AWG		3/4" minimum / 1-3	8 strings / 14-6 AWG				
Dimensions with Safety Switch (HxWxD)		17.7 x 14.6 x 6.8 / 450 x 370 x 174 21.3 x 14.6 x 7.3 / 540 x 370 x 185				/ 540 x 370 x 185	in / mm				
Weight with Safety Switch	22 .	/ 10	25.1 / 11.4	26.2	/ 11.9	38.8	/ 17.6	lb / kg			
Noise		< 25 <50					dBA				
Cooling		Natural Convection									
Operating Temperature Range			-4	40 to +140 / -40 to +6	0(4)			°F/°C			
Protection Rating			NEMA	4X (Inverter with Safet	y Switch)		NEMA 4X (Inverter with Safety Switch)				

⁽³⁾ Revenue grade inverter P/N: SExxxxH-US000BNC4

(4) Full power up to at least 50°C / 122°F; for power de-rating information refer to: https://www.solaredge.com/sites/default/files/se-temperature-derating-note-na.pdf

		BRAWN DT.			
CLAMP WITH I	FOOT AND LOCK	mwatkins			
		REVISION:	Solar mounting solutions		
242-	05158	A	595 MARKET STREET, 29TH FLOOR • SAN FRANCISCO, CA 94105 USA PHONE (415) 580-6900 • FAX (415) 580-6902 THE INFORMATION IN THIS DRAWING IS CONFIDENTIAL AND PROPRIETARY. ANY REPRODUCTION, DISCLOSURE, OR USE THEREOF IS PROHIBICED WITHOUT THE WRITTEN CONSENT OF SUNRAU SOUTH LLC.		
			ARTS LIST		
	ITEM QT		DESCRIPTION STANDARD BASE SEAM CLAMP		
	2 1	SNAPNRACK,	JLTRA FOOT FOR 5/16IN, SILVER		
	3 1	SNAPNRACK,	SEAM CLAMP ROTATION LOCK		
MATERIALS:	6000 SERIES ALUMINUM, STAINL	ESS STEEL	OPTIONS:		
DESIGN LOAD (LBS):	598 UP, 461 DOWN, 275 SIDE				
ULTIMATE LOAD (LBS):	1463 UP, 652 DOWN, 602 SIDE				
TORQUE SPECIFICATION:	16.7 LB-FT				
CERTIFICATION:	UL 2703, FILE E359313	UL 2703, FILE E359313			
WEIGHT (LBS):	0.70				

ALL DIMENSIONS IN INCHES

Penetration Seals

CHEM LINK's patented **ChemCurb Penetration Seal System** has been keeping roof penetrations watertight since 1990. The **ChemCurb System** replaces old-style metal pitch pans with versatile, polyester components, pourable sealants, and **M-1 Structural Adhesive** that can usually be installed in under 10 minutes—and never require flashing or mechanical attachment. **ChemCurbs** are designed for use on granulated modified bitumen, asphalt and coat tar B.U.R. They are also specified for PVC, EPDM, PIB and TPO single ply roofing (must use **CHEM LINK TPO Primer** with TPO). When installed properly, this system forms a durable, waterproof rubber seal around penetrations of any size.

ChemCurbs / E-Curbs

The **ChemCurb System** is sold as a kit or as separate components for larger jobs and unique shapes. Our inside sales staff will work with you on any specific project ensuring that the customer receives the best penetration seal in the industry.

With our traditional **ChemCurb System**, we have expanded our line of **E-Curb**. Both economical and efficient, **E-Curbs** "interlocking slip-fit technology" allows for quick assembly and easy installation.

FlashPack

The *FlashPack* system is a liquid flashing kit designed to waterproof odd-shaped roof penetrations in difficult flashing conditions.

Contractor Hot Line 800-826-1681 Fax: 269-679-4448 Page 2

www.chemlink.com

2-Piece Standoff Technical Datasheet

Pub 101026-1td V1.0 October 2010

2-Piece Aluminum Standoffs	1
2-Piece Aluminum Standoff with SolarMount-I 1-flange connection	2
2-Piece Aluminum Standoff with L-foot connection	2

Standoffs

2-Piece Aluminum Standoffs

Part No. 310503, 310504, 310506, 310507, 310553, 310554, 310556, 310557, 310603, 310604, 310606, 310607, 310653, 310654, 310656, 310657

Dimensions specified in inches unless noted

Standoff and Base Material:

- One of the following extruded aluminum alloys: 6005-T5, 6105-T5, 6061-T6
- Ultimate tensile: 38 ksi; Yeild: 35 ksi
- Clear or Dark anodized

Weight:

- 3" Standoff (as shown): 0.522 pounds (237 g)
- Add 0.086 pounds per inch (39 g/ inch)

Allowable and design loads are valid for a Unirac 2-piece aluminum standoff

Attach with zinc plated carbon steel or stainless steel fasteners

Resistance and safety factors are determined according to Part 1A section 9 of the 2005 Aluminum Design Manual

NOTE: Loads are given for the standoff only. Check load limits for lag screw or other attachment method.

Applied Load Direction	Average Ultimate Load Ibs (N)	Allowable Load Ibs (N)	Safety Factor, W	Design Load Ibs (N)	Resistance Factor, F
Tension/ Compression, Y±	3266 (14528)	1089 (4844)	3.00	1633 (7264)	0.500
ひZ Bending, Applied Moment*	559 ft lbs (758 Nm)	250 ft lbs (339 Nm)	2.24	378 ft lbs (512 Nm)	0.676

*Example: If the module is mounted 6" (0.5 ft) from the base of the standoff, the allowable side load is 250 ft*lbs/ 0.5 ft = 500 lbs

2-Piece Aluminum Standoff with SolarMount-I 1-flange connection Part No. 05013C, 05014C, 05016C, 05017C

Y X X Reference the SolarMount-I series datasheet for 1-flange connection specifications.

For the 1-flange connection to standoff:

- Use included 1 ³⁄₄" EPDM washer between the 1-flange connection and standoff
- Assemble with included 300 series stainless steel ³/₈"-16 flanged hex head screw
- Use anti-seize and tighten to 30 ft-lbs of torque

Allowable and design loads are valid when components are assembled according to authorized Unirac documents.

1-Flange connections are compatible with SolarMount-I series beams.

Resistance factors and allowable loads are determined according to part 1A section 9 of the 2005 Aluminum Design Manual.

NOTE: Loads are for the connection and standoff only. Check load limits for the lag screw or other attachment method.

Applied Load Direction	Average Ultimate Ibs (N)	Allowable Load Ibs (N)	Safety Factor, FS	Design Loads Ibs (N)	Resistance Factor, Φ
Tension, Y+	1415 (6294)	635 (2825)	2.23	960 (4270)	0.679
Compression, Y-	1949 (8670)	873 (3883)	2.23	1320 (5872)	0.677
Transverse, X-, downhill	635 (2825)	313 (1392)	2.03	473 (2104)	0.745
Transverse, X+, uphill	42 (187)	20 (89)	2.15	30 (133)	0.705
UZ Bending, Applied Moment	559 ft lbs (758 Nm)	250 ft lbs (339 Nm)	2.24	378 ft lbs (512 Nm)	0.676

2-Piece Aluminum Standoff with L-foot connection

Reference the SolarMount datasheet for L-foot specifications.

For the L- foot to standoff connection:

- Use included 1 ¾" EPDM washer between the L-foot and standoff
- Assemble with included 300 series stainless steel ³/₈"-16 flanged hex head screw
- Use anti-seize and tighten to 30 ft-lbs of torque

Allowable and design loads are valid when components are assembled according to authorized Unirac documents.

L-feet are compatible with SolarMount, SolarMount Heavy Duty, and SunFrame rails.

Resistance factors and allowable loads are determined according to part 1A section 9 of the 2005 Aluminum Design Manual.

NOTE: Loads are for the connection and standoff only. Check load limits for the lag screw or other attachment method.

Applied Load Direction	Average Ultimate Ibs (N)	Allowable Load Ibs (N)	Safety Factor, FS	Design Loads Ibs (N)	Resistance Factor, Φ
Tension, Y+	1859 (8269)	707 (3144)	2.63	1069 (4755)	0.575
Compression, Y-	3258 (14492)	1325 (5893)	2.46	2004 (8913)	0.615
Sliding, Z±	1766 (7856)	755 (3356)	2.34	1141 (5077)	0.646
Transverse, X±	486 (2162)	213 (949)	2.28	323 (1436)	0.664
して Bending, Applied Moment	559 ft lbs (758 Nm)	250 ft lbs (339 Nm)	2.24	378 ft lbs (512 Nm)	0.676

CrossRail Rails

CrossRail 48-X

Mechanical Properties

	CrossRail 48-X
Material	6000 Series Aluminum
Ultimate Tensile Strength	37.7 ksi (260 MPa)
Yield Strength	34.8 ksi (240 MPa)
Weight	0.56 lbs/ft (0.833 kg/m)
Finish	Mill or Dark Anodized

Section Properties

	CrossRail 48-X
Sx	0.199 in3 (3.261 cm3)
Sy	0.153 in3 (2.507 cm3)
A (X-Section)	0.467 in2 (3.013 cm2)

Dimensions in [mm] Inches

Notes:

- Structural values and span charts determined in accordance with Aluminum Design Manual and ASCE 7-10
- UL2703 Listed System for Fire and Bonding

CrossRail 80

Mechanical Properties

	CrossRail 80
Material	6000 Series Aluminum
Ultimate Tensile Strength	37.7 ksi (260 MPa)
Yield Strength	34.8 ksi (240 MPa)
Weight	0.91 lbs/ft (1.355 kg/m)
Finish	Mill or Dark Anodized

Section Properties

	CrossRail 80
Sx	0.5290 in ³ (8.669 cm ³)
Sy	0.2514 in ³ (4.120 cm ³)
A (X-Section)	0.7770 in² (5.013 cm²)

Dimensions in [mm] Inches

Notes:

- Structural values and span charts determined in accordance with Aluminum Design Manual and ASCE 7-10
- UL2703 Listed System for Fire and Bonding

www.everest-solarsystems.com

CrossRail 48-XL

Mechanical Properties

	CrossRail 48-XL
Material	6000 Series Aluminum
Ultimate Tensile Strength	37.7 ksi (260 MPa)
Yield Strength	34.8 ksi (240 MPa)
Weight	0.76 lbs/ft (1.13 kg/m)
Finish	Mill or Dark Anodized

Section Properties

	CrossRail 48-XL
Sx	0.279 in3 (4.571 cm3)
Sy	0.257 in3 (4.213 cm3)
A (X-Section)	0.652 in2 (4.207 cm2)

Dimensions in [mm] Inches

Notes:

- Structural values and span charts determined in accordance with Aluminum Design Manual and ASCE 7-10
- UL2703 Listed System for Fire and Bonding

CrossRail End Clamp

Item No.	Description	Part No.
1	Allen Bolt	4000429 CR EC Silver, 30-50mm, Shared RL 30-45mm
2	Lock Washer	4000430 CR EC Dark, 30-50mm, Shared RL 30-45mm
3	End Clamp	
4	Clamp Spring	
5	MK3 Slot Nut	

Technical data

	Mid Clamp
Scope of application	Used with all of our CrossRail based
	systems
Fastening type / roof fixture	Clamp
Module orientation	Vertical or horizontal
Material	Stainless steel
Compatible module frame size	30-50mm
Warranty	25 years

www.everest-solarsystems.com

CrossRail Mid Clamp

Item No.	Description	Part No.
1	Allen Bolt	4000601CR MC Silver, 30-47mm, Shared RL 30-42mm
2	Lock Washer	4000602 CR MC Dark, 30-47mm, Shared RL 30-42mm
3	Mid Clamp	
4	Clamp Spring	
5	MK3 Slot Nut	

Technical data

	Mid Clamp
Scope of application	Used with all of our CrossRail based
	systems
Fastening type / roof fixture	Clamp
Module orientation	Vertical or horizontal
Material	Stainless steel
Compatible module frame size	30-47mm
Warranty	25 years

www.everest-solarsystems.com

Highlights	and the second se	Interactive Map
In the Georgetow	n Historic District	
In the Commissio	n of Fine Arts jurisdiction area	
Basic Informat	ion	
1678 32ND STREE	TNW	
SSL (Square, Suffix	(& Lot) 1280 0943	
Lot type	tax lot	
Ward	Ward 2	
ANC	ANC 2E	
SMD	SMD 2E02	
Neighborhood Clus	ster Cluster 4	
Police District	Second Police District	
Police Service Area	a PSA 206	
Voting Precinct	Precinct 5	
Zoning	R-20	
2010 census tract	01	
2010 census block	group 1	
2010 census block	1007	
Ownership and	Taxes	
Tax lot	1280 0943	
Premises	1678 32ND ST NW WASHINGTON DC 20007	
Owner	KAPAN, TUMER	

